This dashboard shows results from Wave 0 of the Berkeley Interpersonal Contact Study (BICS) in Spring 2020.
Newer results are available here
Caveats / underway:
except where noted, these results show the national and city samples pooled together
the pooled estimates have been weighted to improve sample representativeness. Weights are based on age, sex, race/ethnicity, household size, and urbanicity
we are currently collecting data and will post more recent estimates as soon as we can
If you have questions or are interested in funding this study, please contact us at bics@demog.berkeley.edu.
Initial support provided by a Berkeley Population Center pilot grant (NICHD P2CHD073964). This project has been approved by the UC Berkeley IRB (Protocol 2020-03-13128).
Wave 0 results updated 2020-05-07
2020-05-07:
2020-04-22:
2020-04-20:
2020-04-17:
NB: please see the ‘data’ tab if you want the numbers behind these mixing estimates
The matrix calculated below uses the symmetrization formula found in the vignette for the socialmixr package.
(We calculate it by hand, since the package was not designed for data collected using our instrument.) We used the 2018 American Community Survey to obtain the national age-distribution.
# A tibble: 16 x 6
# Groups: ego_age [4]
ego_age alter_age bics fb ratio frac_decrease
<chr> <chr> <dbl> <dbl> <dbl> <dbl>
1 [25,35) [25,35) 0.889 7.16 0.124 0.876
2 [25,35) [35,45) 0.579 2.36 0.245 0.755
3 [25,35) [45,65) 0.397 1.25 0.318 0.682
4 [25,35) [65,100] 0.102 0.173 0.591 0.409
5 [35,45) [25,35) 0.524 3.29 0.159 0.841
6 [35,45) [35,45) 1.11 5.87 0.190 0.810
7 [35,45) [45,65) 0.382 1.70 0.224 0.776
8 [35,45) [65,100] 0.234 0.528 0.443 0.557
9 [45,65) [25,35) 0.315 2.23 0.141 0.859
10 [45,65) [35,45) 0.401 3.10 0.129 0.871
11 [45,65) [45,65) 0.910 3.77 0.241 0.759
12 [45,65) [65,100] 0.281 0.755 0.373 0.627
13 [65,100] [25,35) 0.186 0.737 0.252 0.748
14 [65,100] [35,45) 0.246 2.14 0.115 0.885
15 [65,100] [45,65) 0.528 2.00 0.263 0.737
16 [65,100] [65,100] 0.841 2.17 0.387 0.613
To help summarize patterns in the contact survey data, we fit a negative binomial model, accounting for the right-censoring of reported contacts at 10. These models show relationships among people who have completed the survey; have not been adjusted in any way for sampling. We fit these models using the brms package in R.
We modeled the expected log number of reported contacts as a function of age group, city, gender, and household size. The plots below show posterior means and 95% credible intervals for the estimated coefficients. Estimated coefficients greater than 0 imply that the predictor is associated with higher reported numbers of contacts, while estimated coefficients less than 0 imply that the predictor is associated with lower reported numbers of contacts.
There are two models: one for total number of contacts, and one for the number of non-household contacts.
Coming soon.
The pooled estimates have been weighted using raking to improve sample representativeness. Weights are based on
Population values are taken from the 2018 ACS, estimated from an IPUMS USA extract. We used the R packages ipumsr, leafpeepr and autumn to help perform the raking.
Respondents to the survey were told to consider someone a contact using this text:
We would like to ask you some questions about people you had in-person conversational contact with yesterday.
By in-person conversational contact, we mean a two-way conversation with three or more words in the physical presence of another person.
You might have conversational contact with family members, friends, co-workers, store clerks, bus drivers, and so forth.
(Please do not count people you contacted exclusively by telephone, text, or online. Only consider people you interacted with face-to-face.)
We plan to make a version of the data with no identifying information publicly available as soon as we can. If you are a disease modeler who urgently needs to see the microdata, please reach out to us by email.
The estimated mixing matrices are reproduced as tables below. Note that these are the crude estimates, and have not had a symmetry constraint enforced.
ego_age | alter_age | weighted_n | raw_n | num_interviews | weighted_num_interviews | avg_per_ego |
---|---|---|---|---|---|---|
[18,25) | [0,10) | 37.571151 | 25 | 187 | 173.0706 | 0.2170857 |
[18,25) | [10,18) | 79.644291 | 52 | 187 | 173.0706 | 0.4601839 |
[18,25) | [18,25) | 177.234609 | 154 | 187 | 173.0706 | 1.0240598 |
[18,25) | [25,35) | 70.252132 | 65 | 187 | 173.0706 | 0.4059161 |
[18,25) | [35,45) | 81.103765 | 49 | 187 | 173.0706 | 0.4686167 |
[18,25) | [45,65) | 124.850529 | 95 | 187 | 173.0706 | 0.7213851 |
[18,25) | [65,100] | 7.608073 | 9 | 187 | 173.0706 | 0.0439594 |
[25,35) | [0,10) | 116.352177 | 60 | 280 | 280.9542 | 0.4141321 |
[25,35) | [10,18) | 39.125912 | 29 | 280 | 280.9542 | 0.1392608 |
[25,35) | [18,25) | 110.076026 | 59 | 280 | 280.9542 | 0.3917934 |
[25,35) | [25,35) | 249.689108 | 243 | 280 | 280.9542 | 0.8887181 |
[25,35) | [35,45) | 162.626144 | 105 | 280 | 280.9542 | 0.5788350 |
[25,35) | [45,65) | 111.525268 | 106 | 280 | 280.9542 | 0.3969517 |
[25,35) | [65,100] | 28.742127 | 27 | 280 | 280.9542 | 0.1023018 |
[35,45) | [0,10) | 48.322748 | 59 | 300 | 239.5551 | 0.2017187 |
[35,45) | [10,18) | 94.480736 | 75 | 300 | 239.5551 | 0.3944009 |
[35,45) | [18,25) | 48.123276 | 37 | 300 | 239.5551 | 0.2008861 |
[35,45) | [25,35) | 125.429671 | 117 | 300 | 239.5551 | 0.5235943 |
[35,45) | [35,45) | 266.647299 | 303 | 300 | 239.5551 | 1.1130939 |
[35,45) | [45,65) | 91.532191 | 92 | 300 | 239.5551 | 0.3820925 |
[35,45) | [65,100] | 56.069798 | 54 | 300 | 239.5551 | 0.2340581 |
[45,65) | [0,10) | 55.231023 | 32 | 456 | 452.9296 | 0.1219417 |
[45,65) | [10,18) | 118.638288 | 91 | 456 | 452.9296 | 0.2619354 |
[45,65) | [18,25) | 104.562650 | 81 | 456 | 452.9296 | 0.2308585 |
[45,65) | [25,35) | 142.683316 | 122 | 456 | 452.9296 | 0.3150232 |
[45,65) | [35,45) | 181.844757 | 156 | 456 | 452.9296 | 0.4014857 |
[45,65) | [45,65) | 412.000957 | 359 | 456 | 452.9296 | 0.9096357 |
[45,65) | [65,100] | 127.382691 | 130 | 456 | 452.9296 | 0.2812417 |
[65,100] | [0,10) | 25.721707 | 12 | 214 | 290.4905 | 0.0885458 |
[65,100] | [10,18) | 25.964457 | 10 | 214 | 290.4905 | 0.0893814 |
[65,100] | [18,25) | 28.981090 | 21 | 214 | 290.4905 | 0.0997660 |
[65,100] | [25,35) | 53.956978 | 44 | 214 | 290.4905 | 0.1857444 |
[65,100] | [35,45) | 71.536034 | 59 | 214 | 290.4905 | 0.2462595 |
[65,100] | [45,65) | 153.391066 | 83 | 214 | 290.4905 | 0.5280416 |
[65,100] | [65,100] | 244.200985 | 148 | 214 | 290.4905 | 0.8406505 |
ego_age | alter_age | weighted_n | raw_n | num_interviews | weighted_num_interviews | ego_acs_N | alter_acs_N | unadj_avg_per_ego | other_unadj_avg_per_ego | sym_avg_per_ego |
---|---|---|---|---|---|---|---|---|---|---|
[18,25) | [0,10) | 3.953890 | 8 | 187 | 173.0706 | 30.64812 | NA | 0.0228455 | NA | 0.0228455 |
[18,25) | [10,18) | 13.199912 | 12 | 187 | 173.0706 | 30.64812 | NA | 0.0762690 | NA | 0.0762690 |
[18,25) | [18,25) | 77.487869 | 61 | 187 | 173.0706 | 30.64812 | 30.64812 | 0.4477241 | 0.4477241 | 0.4477241 |
[18,25) | [25,35) | 38.211344 | 29 | 187 | 173.0706 | 30.64812 | 45.27702 | 0.2207848 | 0.2016708 | 0.2593583 |
[18,25) | [35,45) | 13.229269 | 13 | 187 | 173.0706 | 30.64812 | 41.68729 | 0.0764386 | 0.0986204 | 0.1052906 |
[18,25) | [45,65) | 7.913155 | 11 | 187 | 173.0706 | 30.64812 | 83.87452 | 0.0457221 | 0.0875480 | 0.1426571 |
[18,25) | [65,100] | 5.140600 | 4 | 187 | 173.0706 | 30.64812 | 52.40755 | 0.0297023 | 0.0218956 | 0.0335717 |
[25,35) | [0,10) | 15.203660 | 4 | 280 | 280.9542 | 45.27702 | NA | 0.0541144 | NA | 0.0541144 |
[25,35) | [10,18) | 4.637067 | 4 | 280 | 280.9542 | 45.27702 | NA | 0.0165047 | NA | 0.0165047 |
[25,35) | [18,25) | 56.660269 | 25 | 280 | 280.9542 | 45.27702 | 30.64812 | 0.2016708 | 0.2207848 | 0.1755603 |
[25,35) | [25,35) | 88.792135 | 96 | 280 | 280.9542 | 45.27702 | 45.27702 | 0.3160377 | 0.3160377 | 0.3160377 |
[25,35) | [35,45) | 48.302908 | 43 | 280 | 280.9542 | 45.27702 | 41.68729 | 0.1719245 | 0.2643685 | 0.2076664 |
[25,35) | [45,65) | 36.261738 | 41 | 280 | 280.9542 | 45.27702 | 83.87452 | 0.1290664 | 0.1935985 | 0.2438514 |
[25,35) | [65,100] | 11.226470 | 13 | 280 | 280.9542 | 45.27702 | 52.40755 | 0.0399584 | 0.1393813 | 0.1006452 |
[35,45) | [0,10) | 1.552569 | 3 | 300 | 239.5551 | 41.68729 | NA | 0.0064811 | NA | 0.0064811 |
[35,45) | [10,18) | 3.877984 | 4 | 300 | 239.5551 | 41.68729 | NA | 0.0161883 | NA | 0.0161883 |
[35,45) | [18,25) | 23.625022 | 21 | 300 | 239.5551 | 41.68729 | 30.64812 | 0.0986204 | 0.0764386 | 0.0774087 |
[35,45) | [25,35) | 63.330806 | 55 | 300 | 239.5551 | 41.68729 | 45.27702 | 0.2643685 | 0.1719245 | 0.2255487 |
[35,45) | [35,45) | 81.160015 | 83 | 300 | 239.5551 | 41.68729 | 41.68729 | 0.3387948 | 0.3387948 | 0.3387948 |
[35,45) | [45,65) | 50.934190 | 50 | 300 | 239.5551 | 41.68729 | 83.87452 | 0.2126200 | 0.2222265 | 0.3298690 |
[35,45) | [65,100] | 18.719575 | 20 | 300 | 239.5551 | 41.68729 | 52.40755 | 0.0781431 | 0.1240205 | 0.1170283 |
[45,65) | [0,10) | 4.821513 | 5 | 456 | 452.9296 | 83.87452 | NA | 0.0106452 | NA | 0.0106452 |
[45,65) | [10,18) | 9.414275 | 5 | 456 | 452.9296 | 83.87452 | NA | 0.0207853 | NA | 0.0207853 |
[45,65) | [18,25) | 39.653093 | 22 | 456 | 452.9296 | 83.87452 | 30.64812 | 0.0875480 | 0.0457221 | 0.0521275 |
[45,65) | [25,35) | 87.686513 | 73 | 456 | 452.9296 | 83.87452 | 45.27702 | 0.1935985 | 0.1290664 | 0.1316355 |
[45,65) | [35,45) | 100.652942 | 91 | 456 | 452.9296 | 83.87452 | 41.68729 | 0.2222265 | 0.2126200 | 0.1639514 |
[45,65) | [45,65) | 142.549816 | 128 | 456 | 452.9296 | 83.87452 | 83.87452 | 0.3147284 | 0.3147284 | 0.3147284 |
[45,65) | [65,100] | 54.865798 | 59 | 456 | 452.9296 | 83.87452 | 52.40755 | 0.1211354 | 0.2972861 | 0.1534447 |
[65,100] | [0,10) | 20.758515 | 8 | 214 | 290.4905 | 52.40755 | NA | 0.0714602 | NA | 0.0714602 |
[65,100] | [10,18) | 17.492146 | 7 | 214 | 290.4905 | 52.40755 | NA | 0.0602159 | NA | 0.0602159 |
[65,100] | [18,25) | 6.360470 | 9 | 214 | 290.4905 | 52.40755 | 30.64812 | 0.0218956 | 0.0297023 | 0.0196328 |
[65,100] | [25,35) | 40.488956 | 32 | 214 | 290.4905 | 52.40755 | 45.27702 | 0.1393813 | 0.0399584 | 0.0869515 |
[65,100] | [35,45) | 36.026778 | 36 | 214 | 290.4905 | 52.40755 | 41.68729 | 0.1240205 | 0.0781431 | 0.0930895 |
[65,100] | [45,65) | 86.358775 | 46 | 214 | 290.4905 | 52.40755 | 83.87452 | 0.2972861 | 0.1211354 | 0.2455773 |
[65,100] | [65,100] | 74.663290 | 49 | 214 | 290.4905 | 52.40755 | 52.40755 | 0.2570249 | 0.2570249 | 0.2570249 |